Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

leq2(0, y) -> true
leq2(s1(x), 0) -> false
leq2(s1(x), s1(y)) -> leq2(x, y)
if3(true, x, y) -> x
if3(false, x, y) -> y
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
mod2(0, y) -> 0
mod2(s1(x), 0) -> 0
mod2(s1(x), s1(y)) -> if3(leq2(y, x), mod2(-2(s1(x), s1(y)), s1(y)), s1(x))

Q is empty.


QTRS
  ↳ Non-Overlap Check

Q restricted rewrite system:
The TRS R consists of the following rules:

leq2(0, y) -> true
leq2(s1(x), 0) -> false
leq2(s1(x), s1(y)) -> leq2(x, y)
if3(true, x, y) -> x
if3(false, x, y) -> y
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
mod2(0, y) -> 0
mod2(s1(x), 0) -> 0
mod2(s1(x), s1(y)) -> if3(leq2(y, x), mod2(-2(s1(x), s1(y)), s1(y)), s1(x))

Q is empty.

The TRS is non-overlapping. Hence, we can switch to innermost.

↳ QTRS
  ↳ Non-Overlap Check
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

leq2(0, y) -> true
leq2(s1(x), 0) -> false
leq2(s1(x), s1(y)) -> leq2(x, y)
if3(true, x, y) -> x
if3(false, x, y) -> y
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
mod2(0, y) -> 0
mod2(s1(x), 0) -> 0
mod2(s1(x), s1(y)) -> if3(leq2(y, x), mod2(-2(s1(x), s1(y)), s1(y)), s1(x))

The set Q consists of the following terms:

leq2(0, x0)
leq2(s1(x0), 0)
leq2(s1(x0), s1(x1))
if3(true, x0, x1)
if3(false, x0, x1)
-2(x0, 0)
-2(s1(x0), s1(x1))
mod2(0, x0)
mod2(s1(x0), 0)
mod2(s1(x0), s1(x1))


Q DP problem:
The TRS P consists of the following rules:

MOD2(s1(x), s1(y)) -> LEQ2(y, x)
-12(s1(x), s1(y)) -> -12(x, y)
MOD2(s1(x), s1(y)) -> MOD2(-2(s1(x), s1(y)), s1(y))
LEQ2(s1(x), s1(y)) -> LEQ2(x, y)
MOD2(s1(x), s1(y)) -> IF3(leq2(y, x), mod2(-2(s1(x), s1(y)), s1(y)), s1(x))
MOD2(s1(x), s1(y)) -> -12(s1(x), s1(y))

The TRS R consists of the following rules:

leq2(0, y) -> true
leq2(s1(x), 0) -> false
leq2(s1(x), s1(y)) -> leq2(x, y)
if3(true, x, y) -> x
if3(false, x, y) -> y
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
mod2(0, y) -> 0
mod2(s1(x), 0) -> 0
mod2(s1(x), s1(y)) -> if3(leq2(y, x), mod2(-2(s1(x), s1(y)), s1(y)), s1(x))

The set Q consists of the following terms:

leq2(0, x0)
leq2(s1(x0), 0)
leq2(s1(x0), s1(x1))
if3(true, x0, x1)
if3(false, x0, x1)
-2(x0, 0)
-2(s1(x0), s1(x1))
mod2(0, x0)
mod2(s1(x0), 0)
mod2(s1(x0), s1(x1))

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ Non-Overlap Check
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MOD2(s1(x), s1(y)) -> LEQ2(y, x)
-12(s1(x), s1(y)) -> -12(x, y)
MOD2(s1(x), s1(y)) -> MOD2(-2(s1(x), s1(y)), s1(y))
LEQ2(s1(x), s1(y)) -> LEQ2(x, y)
MOD2(s1(x), s1(y)) -> IF3(leq2(y, x), mod2(-2(s1(x), s1(y)), s1(y)), s1(x))
MOD2(s1(x), s1(y)) -> -12(s1(x), s1(y))

The TRS R consists of the following rules:

leq2(0, y) -> true
leq2(s1(x), 0) -> false
leq2(s1(x), s1(y)) -> leq2(x, y)
if3(true, x, y) -> x
if3(false, x, y) -> y
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
mod2(0, y) -> 0
mod2(s1(x), 0) -> 0
mod2(s1(x), s1(y)) -> if3(leq2(y, x), mod2(-2(s1(x), s1(y)), s1(y)), s1(x))

The set Q consists of the following terms:

leq2(0, x0)
leq2(s1(x0), 0)
leq2(s1(x0), s1(x1))
if3(true, x0, x1)
if3(false, x0, x1)
-2(x0, 0)
-2(s1(x0), s1(x1))
mod2(0, x0)
mod2(s1(x0), 0)
mod2(s1(x0), s1(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 3 SCCs with 3 less nodes.

↳ QTRS
  ↳ Non-Overlap Check
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ QDPAfsSolverProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

-12(s1(x), s1(y)) -> -12(x, y)

The TRS R consists of the following rules:

leq2(0, y) -> true
leq2(s1(x), 0) -> false
leq2(s1(x), s1(y)) -> leq2(x, y)
if3(true, x, y) -> x
if3(false, x, y) -> y
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
mod2(0, y) -> 0
mod2(s1(x), 0) -> 0
mod2(s1(x), s1(y)) -> if3(leq2(y, x), mod2(-2(s1(x), s1(y)), s1(y)), s1(x))

The set Q consists of the following terms:

leq2(0, x0)
leq2(s1(x0), 0)
leq2(s1(x0), s1(x1))
if3(true, x0, x1)
if3(false, x0, x1)
-2(x0, 0)
-2(s1(x0), s1(x1))
mod2(0, x0)
mod2(s1(x0), 0)
mod2(s1(x0), s1(x1))

We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.

-12(s1(x), s1(y)) -> -12(x, y)
Used argument filtering: -12(x1, x2)  =  x2
s1(x1)  =  s1(x1)
Used ordering: Precedence:
trivial



↳ QTRS
  ↳ Non-Overlap Check
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ QDPAfsSolverProof
QDP
                    ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

leq2(0, y) -> true
leq2(s1(x), 0) -> false
leq2(s1(x), s1(y)) -> leq2(x, y)
if3(true, x, y) -> x
if3(false, x, y) -> y
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
mod2(0, y) -> 0
mod2(s1(x), 0) -> 0
mod2(s1(x), s1(y)) -> if3(leq2(y, x), mod2(-2(s1(x), s1(y)), s1(y)), s1(x))

The set Q consists of the following terms:

leq2(0, x0)
leq2(s1(x0), 0)
leq2(s1(x0), s1(x1))
if3(true, x0, x1)
if3(false, x0, x1)
-2(x0, 0)
-2(s1(x0), s1(x1))
mod2(0, x0)
mod2(s1(x0), 0)
mod2(s1(x0), s1(x1))

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ Non-Overlap Check
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ QDPAfsSolverProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LEQ2(s1(x), s1(y)) -> LEQ2(x, y)

The TRS R consists of the following rules:

leq2(0, y) -> true
leq2(s1(x), 0) -> false
leq2(s1(x), s1(y)) -> leq2(x, y)
if3(true, x, y) -> x
if3(false, x, y) -> y
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
mod2(0, y) -> 0
mod2(s1(x), 0) -> 0
mod2(s1(x), s1(y)) -> if3(leq2(y, x), mod2(-2(s1(x), s1(y)), s1(y)), s1(x))

The set Q consists of the following terms:

leq2(0, x0)
leq2(s1(x0), 0)
leq2(s1(x0), s1(x1))
if3(true, x0, x1)
if3(false, x0, x1)
-2(x0, 0)
-2(s1(x0), s1(x1))
mod2(0, x0)
mod2(s1(x0), 0)
mod2(s1(x0), s1(x1))

We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.

LEQ2(s1(x), s1(y)) -> LEQ2(x, y)
Used argument filtering: LEQ2(x1, x2)  =  x2
s1(x1)  =  s1(x1)
Used ordering: Precedence:
trivial



↳ QTRS
  ↳ Non-Overlap Check
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ QDPAfsSolverProof
QDP
                    ↳ PisEmptyProof
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

leq2(0, y) -> true
leq2(s1(x), 0) -> false
leq2(s1(x), s1(y)) -> leq2(x, y)
if3(true, x, y) -> x
if3(false, x, y) -> y
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
mod2(0, y) -> 0
mod2(s1(x), 0) -> 0
mod2(s1(x), s1(y)) -> if3(leq2(y, x), mod2(-2(s1(x), s1(y)), s1(y)), s1(x))

The set Q consists of the following terms:

leq2(0, x0)
leq2(s1(x0), 0)
leq2(s1(x0), s1(x1))
if3(true, x0, x1)
if3(false, x0, x1)
-2(x0, 0)
-2(s1(x0), s1(x1))
mod2(0, x0)
mod2(s1(x0), 0)
mod2(s1(x0), s1(x1))

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ Non-Overlap Check
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP

Q DP problem:
The TRS P consists of the following rules:

MOD2(s1(x), s1(y)) -> MOD2(-2(s1(x), s1(y)), s1(y))

The TRS R consists of the following rules:

leq2(0, y) -> true
leq2(s1(x), 0) -> false
leq2(s1(x), s1(y)) -> leq2(x, y)
if3(true, x, y) -> x
if3(false, x, y) -> y
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
mod2(0, y) -> 0
mod2(s1(x), 0) -> 0
mod2(s1(x), s1(y)) -> if3(leq2(y, x), mod2(-2(s1(x), s1(y)), s1(y)), s1(x))

The set Q consists of the following terms:

leq2(0, x0)
leq2(s1(x0), 0)
leq2(s1(x0), s1(x1))
if3(true, x0, x1)
if3(false, x0, x1)
-2(x0, 0)
-2(s1(x0), s1(x1))
mod2(0, x0)
mod2(s1(x0), 0)
mod2(s1(x0), s1(x1))

We have to consider all minimal (P,Q,R)-chains.